
NASA's 1995 Conference on Mass Storage Systems and Technologies

Constraint Based Scheduling
for the

Goddard Space Flight Center Distributed Active Archive Center's
Data Archive and Distribution System

Nick Short Jr. - Information Science and Technology Branch
NASA - GSFC
Greenbelt Road

Greenbelt, MD 20771
301-286-6604

short@dunloggin.gsfc.nasa.gov

Jean-Jacques Bedet and Lee Bodden - Hughes STX
7701 Greenbelt Road, suite 400

Greenbelt, MD 20770
301-441-4285 Fax (301) 441-2392

{bedet,bodden}@daac.gsfc.nasa.gov

Mark Boddy, Jim White, and John Beane - Honeywell Technology Center
Honeywell Technology Center

3660 Technology Dr.
Minneapolis, MN 55418

612-951-7355 Fax 612-951-7438
{boddy,jwhite,beane}@src.honeywell.com

Abstract

The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has
been operational since October 1, 1993. Its mission is to support the Earth Observing
System (EOS) by providing rapid access to EOS data and analysis products, and to test
Earth Observing System Data and Information System (EOSDIS) design concepts. One of
the challenges is to ensure quick and easy retrieval of any data archived within the DAAC's
Data Archive and Distributed System (DADS). Over the 15-year life of EOS project, an
estimated several Peta-bytes (10^15) of data will be permanently stored. Accessing that
amount of information is a formidable task that will require innovative approaches. As a
precursor of the full EOS system, the GSFC DAAC with a few Tera-bytes of storage, has
implemented a prototype of a constraint-based task and resource scheduler to improve the
performance of the DADS.

This Honeywell Task and Resource Scheduler (HTRS), developed by Honeywell
Technology Center in cooperation with the Information Science and Technology
Branch/935, the Code X Operations Technology Program, and the GSFC DAAC, makes
better use of limited resources, prevents backlog of data, and provides information about
resource bottlenecks and performance characteristics. The prototype which is developed
concurrently with the GSFC Version 0 (V0) DADS, models DADS activities such as

Page 1

ingestion and distribution with priority, precedence, resource requirements (disks and
network bandwidth) and temporal constraints. HTRS supports schedule updates,
insertions, and retrieval of task information via an Application Program Interface (API).
The prototype has demonstrated with a few examples, the substantial advantages of using
HTRS over scheduling algorithms such a First In First Out (FIFO) queue. The kernel
scheduling engine for HTRS, called Kronos, has been successfully applied to several other
domains such as space shuttle mission scheduling, demand flow manufacturing, and
avionics communications scheduling.

Introduction

The main objective of the Code X Operations Technology Program (X-OTP) is to provide
advanced techniques in order to reduce NASA's operational costs by focusing on reusable
software technology. In addition to numerous technologies such as electronic
documentation, database management systems, system diagnosis, and data analysis tools to
name a few, one of the successful areas of X-OTP has been the application of planning and
scheduling technologies to missions operations throughout NASA. In cooperation with the
GSFC DAAC and Honeywell Technology Center, X-OTP has initiated a program to apply
scheduling technology to various areas within the EOSDIS. In addition to providing local
management for this project, the Information Science and Technology Branch, which is
part of the GSFC supercomputer facility or the Space Data and Computing Division, has
been providing its Intelligent Information Fusion System (IIFS) as a modular, end-to-end,
advanced prototype system for testing these new technologies. Free from many
requirements of operational systems, this prototype system is being used to guide several
of the technological extensions for this scheduling project.

This paper presents the first phase of this project by discussing the capabilities of the
Honeywell Task and Resource Scheduler (HTRS) as they apply to the scheduling of
operations in large mass storage systems. The GSFC DAAC architecture is briefly
introduced and the main DADS functions are described as they relate to mass storage
issues. The approach used to solve scheduling issues and the specific DADS scheduler
requirements is then explained. The architecture of the scheduler, its domain model, and an
application Program Interface (API) to communicate with the scheduler is also presented.
In particular, the paper describes the application of a constraint-based scheduling to a mass
storage system for the management of data ingestion, dissemination over a network
environment, and distribution of datasets copied to tapes. Due to the large number of daily
tasks and their dependencies, the slow seek time on tapes, and deadlines which must be
met, a First In First Out (FIFO) scheduling algorithm, as well as other queuing approaches,
is not adequate. HTRS increases the throughput of the various DAAC activities by making
efficient use of the DAAC's computer resources. The HTRS is an adaptive, dynamic
scheduler capable of modeling numerous system resources such as disk storage, robotic
devices, processors, memory, and network bandwidth. HTRS handles resource
contention, prevents deadlocks, and makes decisions based on a set of defined policies.
By modeling database operations as tasks with priority, precedence, duration, resource
requirements and temporal constraints, HTRS efficiently supports schedule updates,
insertions, and retrieval of task information.

General Scheduling issues

Given many of the misconceptions about scheduling, this section will cover a brief
summary of the common definitions and topics surrounding data processing scheduling for
those readers not familiar with the terminology in the following sections. In general, most
non-real-time Operating Systems (OS) handle task management by assuming that tasks

operate independently of each other and that execution characteristics cannot be accurately
determined a priority. Hence, simple queuing methods dominate this category, often
providing sub optimal solutions (e.g., FIFO scheduling). The Unix OS, in fact, was
designed for general purpose workstations where little is ever known about task
characteristics.

Improvements to these approaches require an analysis of the operating characteristics of
typical tasks, such as determining if tasks have priority or deadlines, arrive periodically or
arbitrarily, operate in a uniprocessor/multiprocessor or heterogeneous/homogeneous
environments (i.e., different or same processors), exhibit predictable resource properties,
and organize into a data flow graph (i.e., tasks whose execution precedes and passes data
to others) . These improvements are constrained by the operational requirements such as
trying to minimize task completion time, demanding that most or all tasks meet their
deadlines (i.e., soft real-time or hard real-time), and allowing tasks to be preemptable or
nonpreemptable to name a few.

Based on these characteristics, the scheduling problem can be defined as given a set of
tasks T associated with a subset C of the aforementioned constraints, determine the
execution sequence, if possible, that best satisfies C. Two basic types of scheduling
approaches exist: static (or deterministic) and dynamic (or non-deterministic). Static
schedulers create schedules off-line after all task information has been collected while
dynamic schedulers determine schedules on-line during continuous data collection. Any
static scheduler is optimal only if it produces schedules that satisfy C whenever any other
scheduler satisfies C. A dynamic scheduler, however, produces an optimal schedule if it
always produces a feasible schedule when a static scheduler with complete information can
create one. Obviously, static schedulers are always sub-optimal when the collected
information changes before the schedule is produced, regardless of which scheduling
algorithm is used. While dynamic schedulers suffer less from this problem, they incur a lot
of overhead due to the cost of constantly collecting information. For this reason, many
schedulers utilize a hybrid approach where scheduling is done off-line while adjustments
are made on-line.

Related to this issue, schedulers are also classified as adaptive or non adaptive depending
on whether the environment provides feedback to the scheduler. That is, the scheduler's
control mechanism changes in response to system histories or trends. Dynamic schedulers
are almost always adaptive. Of course, the type of information collected determines how
well the scheduler performs. Estimates of task duration can be based upon best, average,
or worst-case estimates depending on optimism or pessimism. Other statistics can include
modeling the average number of tasks arriving for particular times, hot spots for resource
usage, inter-task communications costs, etc. Determining how refined the statistics model
always depends on the performance requirements, which often change to meet evolving
bureaucratic policies.

Institutional requirements usually determine the control architecture of the scheduling
environment. For example, Centralized systems such as shared memory models are those
where processors essentially operate in a group where inter processor communication costs
are minimal with respect to processor execution costs. By contrast, decentralized systems
such as wide area networks (e.g., the DAAC's) imply high inter processor communication
costs. Often times, centralized or distributed scheduling means that the computing
environment is centralized or decentralized. This should not be confused with the much
harder problem of using multiple schedulers to control a distributed environment versus
using a centralized scheduler to control a distributed environment.

Adding to the confusion, the power of scheduling algorithms is often overestimated. For
example, scheduling tasks with arbitrary precedence between tasks for multiprocessors is
proven to be NP-hard (i.e., essentially known to take an exponential number of steps as a
function of the number of tasks) with only unit execution time, regardless of whether tasks
are preemptive or non preemptive. Hence, because most of the non NP-hard algorithms
(i.e., polynomial) are too restrictive, schedulers realistically must utilize heuristic
approaches (i.e., smart guessing) while searching for feasible schedules. This involves the
construction of a function, often called an objective function, that encapsulates a notion of
"goodness" for evaluating one proposed schedule versus another during the search through
the space of possible schedules. Objective functions can be explicitly represented by
numeric formulae for simple comparison or they can be implicitly captured in the
scheduling policy algorithm. Regardless, the objective function or scheduling policy
algorithm should be flexible enough to change as the institution governing the processing
environment modifies its notion of a good schedule. For instance, an institution may want
to guarantee that all or most task deadlines are met one day while on another day, it may
wish to minimize completion time of tasks.

Scheduling issues with mass storage systems

Today's mass storage systems are critical resources that usually must operate in a complex
and changing institutional environment. These institutions must process large volumes of
data while providing efficient and reliable service to a large number of users, who typically
request resources at unpredictable times. Satisfaction of these users is critical in order to
justify the enormous investment required to run these large institutions. Also, proper
decision making about which resources is absolutely necessary for controlling the high cost
of these computing environment. Scheduling technologies allow institutions to provide
services according to reasonable user deadlines while providing information about which
resources are bottlenecks that must be alleviated with the purchase of appropriate hardware.

These characteristics are certainly true of the EOS architecture and, in particular, are being
evaluated in the context of the GSFC DAAC -- a system that is intended as an operational
testbed for EOS. Although nowhere near the size of the final EOS system, the GSFC
DAAC is estimated to process 250 SeaWiFs orders per day, corresponding to 40 GB of
data. In addition, 20 GB of non-SeaWiFS products are expected to be ordered each day
while 26 GB of new data will be ingested. Due to the large number requests and the large
volume of data to process, manually generating feasible schedules will not be possible.
Moreover, using the FIFO queue approach is not an acceptable solution because it does not
make the best use of the resources available (e.g., tape drive, disk space), it doesn't have
the ability to guarantee that most deadlines are met, and it provides little information about
resource bottlenecks.

Of particular note, each request (e.g., distribution) has several tasks that must be scheduled
individually. For example, to process an order for data requested on an 8mm tape, the
tasks may consist of retrieving the data from near-line devices, transfer the files to a staging
area, and then copy the files to an 8mm tape. Overall thousands of tasks with predecessor
and successor tasks, each with specific needs for resources, must be scheduled and tasks
cannot be treated equally. Requests for data to be sent over the network may be given a
higher priority than data requested on tapes. Hence, the schedule should reflect these
DAAC policies that determine, for example, deadlines and priorities.

Given that many of the operations involve transfer from one medium to another, proper
migration from slower devices such as mass storage to faster devices is necessary to
minimize average access times. That is, anticipation of requests should cause data to be
moved into faster devices "just in time" for the request to be satisfied. This, of course, is

similar to the notion of "locality of reference" in any memory hierarchy where the storage
management system prefetches blocks of data in anticipation of future access to those
blocks. Only here, the prefetching is also based on models of the external task
environment in addition to load characteristics of the tasks, implying that a powerful
scheduler can reduce access times by performing tasks just in time for delivery.

Because of the need to quickly anticipate trends in the external and internal processing
environment, another challenge is to have a schedule that can be dynamically and quickly
updated when new orders are received, when some of the resources become unavailable
during a period of time, or when a given resource must be restricted to improve the overall
performance of the system. For an example of this last category, tests conducted at the
DAAC have shown that the number of concurrent NFS actions between the Unitree cache
and the distribution staging area had to be limited to six or seven in order to achieve an
acceptable throughput. Thus, the scheduler should model resources such as NFS
resources to anticipate the proper localities of reference.

While the anticipation of many actions can be automated, many external events to the
system requires that a human operator be present to make adjustments. That is, in any
symbiotic production environment involving both computers and humans, tools must exist
to help operators identify the status of the orders and their respective tasks as they relate to
policies provided by management. For example, an estimated completion time for each
task could be presented to the operator in order for the operator to communicate information
back to high priority users.

These estimates should be based not only on the approximate duration of each task but on
the availability of the resources. In fact the estimates for each task could be complex,
however, the actual and the estimated times can be continuously compared so that better
statistical approaches can be introduced. After conducting several tests simulating next
year's workload, it became clear that scheduling was very important.

GSFC DAAC architecture

The GSFC DAAC has been developed to support existing and pre-EOS Earth science
datasets, facilitate scientific research, and test EOSDIS operational concepts. Its design is
based on the EOSDIS functional requirements and the requirements generated by specific
Science projects such as Sea-viewing Wide Field-of-view Sensor (SeaWiFS).

GSFC DAAC has three main components illustrated in Fig 1. The Product Generation
System (PGS) receives low-level data products and generates higher level data products.
The Data Archive and Distribution System (DADS) role is to archive all new data products
and to distribute over the network or on a variety of physical media, data ordered by
researchers. The Information Management System (IMS) is a data base of the data
holdings which can be searched, browsed by researchers to help them identify and order
data of interests.

I MS DADS PG S

Archive
o near-line
o on-line
o off-line

Inventory

Use rs

Orders

metadata

L0-L4 data

Metadata

L0 data

metadata

L0-L4 data
metadatametadata

Search
Orders

Data ordered

Figure 1 GSFC DAAC components

Although smaller than the overall facilities in the Space Data and Computing Division, the
GSFC DAAC has currently 731 GB of data archive but this number is expected to increase
to about 18 TeraBytes by FY97 [1]. To satisfy these requirements the GSFC DAAC has
the following hardware architecture.

• The IMS system with its Oracle data base runs on a dedicated SGI 4D/440 VGX.

• The DADS software and the Hierarchical Storage Management (HSM) system Unitree to
automate the migration and the stage operations, run on a SGI 4D/440 S. Data are archived
either on a Cygnet 1803 jukebox (1179 MB) with 2 ATG WORM drives or an RSS-600
Metrum Automated Tape Library (ATL) (8700 MB) with 4 RSP 2150 VHS drives. The
SGI 4D/440 S was too limited in terms of I/O bandwidth and ports. A SGI challenger L
(DADS2) has been acquired to handle all the distribution copies on tapes. There are
currently nine 8 mm drives, four 4 mm drives, and two 9 track drives attached to the
EOSDADS2 machine.

• There is a future plan to build a Backup system that will run on an SGI Challenge S. Its
function will be to keep a second copy of all data ingested at the DAAC.

• The PGS is composed of 3 SGI workstations. Two additional workstations are used to
do Q/A on the data.

• The DAAC's distributed environment includes two ethernet Local Area Networks, and an
FDDI network.

GSFC V0 DADS functions

The three main functions of the DADS are archive, distribution, and data management. The
archive function consists of accepting data products from outside the system, extracting
metadata, validating files, and updating the database. The distribution function retrieves
files from archives, stages them to a distribution staging area, reformats the data if
necessary (e.g., tar is the normal format for orders), and writes the data to tapes or to the
FTP staging disk. The DADS management handles the schedules, tracks DADS activities,
and allocates/deallocates resources.

DADS V0 Scheduler

Execution

DADS
Manager

Task
Dispatcher

Application Program Interface

Task & Resource
Scheduler

Monitor

Figure 2. The HTRS Scheduler's Architectural Environment

The DADS V0 Scheduler is responsible for scheduling actions and resources to ingest data
from a network to buffer disks, transfer buffered or cached data to a mass storage archive,
and to retrieve archived data upon request. The scheduler was developed concurrently with
the design and implementation of the GSFC V0 DADS. Consequently, the architecture and
interfaces must tolerate changes as the system design evolved. The current version of the
DADS software uses a multi-level priority queue algorithm, as a baseline system, to
schedule its activities, however, there are plans to integrate the Honeywell Task and
Resource Scheduler to the DADS for performance improvements. The baseline
architectural environment of the HTRS scheduler is depicted in Figure 2. This environment
continues to evolve, but its conceptual and functional characteristics remain stable, so many
system changes can be accommodated in the Application Program Interface (API).

The DADS Manager submits scheduling requests, handles errors, and retrieves schedule
information. The Task Dispatcher periodically queries the scheduler for a list of upcoming
scheduled activities to be executed. The execution monitor notifies the scheduler of events
that affect the schedule.

Approach

Constraint envelope scheduling technology offers an attractive, proven method of meeting
the scheduling needs of data archiving and distribution. This technology, embodied in
Honeywell's enhanced implementation of the Time Map Manager (TMM), supports the
concept of a Temporal Constraint Graph (TCG) which can be used to represent multiple
projections of future system behavior, thereby providing rapid rescheduling with minimal
disruption in the presence of schedule uncertainty or changing policy situations.

The DADS V0 Scheduler is an application of the Kronos scheduling engine that is built on
top of TMM and designed to be adaptive and dynamic. Kronos has been successfully
applied to domains such as space shuttle mission scheduling, demand flow manufacturing,
and avionics communications scheduling. It has handled scheduling problems involving
20,000 tasks and 140,000 constraints, with interactive response times for schedule
modification on the order of a few seconds on a SPARC10.

Scheduler Requirements

Detailed scheduler requirements were initially established for the DADS application, then
extended and adapted to encompass the scheduling needs of other NASA programs based
upon feedback from the IIFS. The following paragraphs summarize requirements at a high
level. They confirm the need to be appropriate to the application domain, to be compatible
with the target system, and to provide responsive performance reliably.

Domain Appropriate - Commercial scheduling tools sacrifice domain relevance to extend
their range of applicability, and hence their marketability. They often lack the capacity to
efficiently handle the precise scheduling needs of large, complex applications such as those
presented by EOS. In order to select or define a scheduling tool that is domain appropriate,
application-driven requirements must be established. Whenever possible, these
requirements should be based on multiple examples of domain operations and scheduling
functions using realistic data sets. They must include a quantitative demonstration so that
capacity and performance goals can be met simultaneously.

Since the GSFC V0 DADS is being developed concurrently with the prototype scheduler,
we were careful to maintain a high degree of generality in the scheduler implementation.
By first building a core scheduling capability derived from our Kronos scheduling engine,
and then extending that capability through specialization, we were able to meet the specific
needs of DADS while providing a scheduling tool that can easily be applied to similar
problem domains in EOS.

Stated as a system requirement, the scheduling core domain model must be compatible with
objects and functions required by the target application. Further, its customization
capabilities must support accurate modeling of every schedule and relevant aspect of the
domain. Care should be taken to ensure that this model reflects the intended scheduling
policies and procedures of the application, and not the characteristics of analytical models
used to project system performance.

Details of the scheduling core domain model are described in the Domain Model section.
For the prototype scheduler, subclasses were created to capture application specific
attributes and relationships. These attributes may be used to carry system data through the
schedule or to support performance monitoring and analysis.

By creating persistent requirement and persistent resource profile classes as subclasses of
the requirement class and resource profile class using an object-oriented model,
respectively, we were able to provide the necessary scheduler functionality with a minimum
of disruption. Persistent requirements have the option of specifying that they begin, use,
or end with their associated activity. This allows the resource allocation to be open ended if
desired.

To be effective, any tool must be functionally complete and be able to solve the problems
for which it is applied. A scheduler must enforce structural constraints (i.e., predecessor-
successor and parent-child relationships), temporal constraints (e.g., earliest start or
deadline), and resource availability constraints while carrying out the desired scheduling
and resource allocation policies in an automated fashion. In the prototype scheduler,
policies are currently encoded as functions and a domain-specific algorithm (as described in
the Scheduling Policy section.

We plan to eventually excise policy details from the scheduler by defining syntax for policy
specification. One possible solution would be to utilize a rule- or knowledge-based
approach to represent the numerous institutional policies. The major advantage of this
approach is that rules (e.g., if-then statements) can naturally represent situations when a
particular schedule is "good". Likewise, a dependence on rules allows for the
incorporation of several knowledge acquisition tools. In the IIFS, for example, the Advice
Taker/Inquirer (AT/I) allows users to enter and modify expertise in lucid forms such as
natural language. Should a policy change, a tool like the AT/I could be used to quickly
modify the appropriate rule governing that policy.

Compatible - The scheduling tool described here is designed be integrated as a functional
component into the target application system. It cannot dictate requirements to that system,
rather, it must adapt to the physical and logical demands of the encompassing system. The
scheduler must execute on available hardware running the specified operating system. It
must be able to communicate with asynchronous functional modules of application system
via standard interprocess communication system facilities.

The scheduler must also be linguistically compatible with the surrounding system. It must
be able to interpret and respond appropriately to requests for service and information. The
prototype scheduler meets this requirement in several ways. The scheduler includes an API
customized to the syntactic and semantic needs of the DADS modules with which it
interacts. An underlying set of basic API functions facilitates this customization.

The scheduler supports the notion of activity state. The exact states and legal state
transitions are defined for the application. In DADS, activities can be scheduled,
committed, dispatched, executing, complete, or failed. Additional states and even
additional state dimensions can be added as the need arises.

Responsive - Performance is often a critical requirement, but it is frequently overlooked in
scheduling. There are often assumptions that scheduling will be performed once in an
initial scheduling effort and that the resulting schedule will satisfactorily describe the actual
execution of activities. This view is seldom correct and certainly incorrect in data
processing scheduling.

We have segregated the total problem into two phases, planning (what to do) and
scheduling (when to do it). In other words, planners are allowed to substitute similar
tasks in order to find a set of tasks that have feasible schedules. Schedulers per se are
given a fixed set of tasks and only leeway in the selection of resources and start/end times.
Unlike the DADS and for that matter, the rest of EOSDIS, the IIFS utilizes the

planning/scheduling approach to generate browse products in lieu of standard products
when computational constraints are too great for standard product generation. For
example, computationally cheaper, yet less accurate tasks can be intelligently substituted
for expensive tasks in order to better meet deadlines or minimize resources. This situation
occurs often in image processing where resampling routines can reduce the image size.
The browse products can be used by users to decide whether to initiate a standing order
request. In this way, just as it was one of the first systems to suggest object-oriented
programming and databases for the EOSDIS domain, the IIFS has allowed for the testing
of risky, new ideas that may not yet have been considered within the operational DAACs.

Nevertheless, by making this distinction, we have not only, made each aspect more
manageable, but we can tailor the functionality and performance of each component's
implementation to the needs of the application. Planning typically occurs before
scheduling, though replanning may become necessary. In the GSFC V0 DADS
application, there is a small set of functions to be performed (e.g., ingestion, distribution).
These can possibly be pre-planned in advance and described to the scheduler as tasks (with
subtasks).

The scheduler must, on demand and in near real time, fit each new instance of a task into
the current schedule in accordance with task priorities and deadlines while ensuring that
necessary resources will be available. As actual events occur in the execution of the
scheduler, it must rapidly reschedule to reflect the impact of the event. It must provide data
to support graphic presentation of the current schedule, and even allow operator
manipulation of tasks.

Reliable - The fault tolerance approach employed by the target application must be
supported by the scheduler. In the GSFC V0 DADS this translates to requirements for
redundant archiving of schedule information and rapid recovery of the schedule after a
failure. The prototype scheduler does not fully include these features at present. However,
basic mechanisms needed for reload are present in the script processor described in the
Prototype Environment section. Also, previous schedulers based on the Kronos engine
have included schedule storage and reload capabilities.

Prototype Environment

The DADS V0 Scheduler is being developed concurrently with the GSFC V0 DADS.
Consequently, a stand-alone environment was needed in which to test and demonstrate
scheduler functionality. The operation of components external to the scheduler was
simulated via a script processor as shown in Figure 3. The script processor is controlled
from a demonstration Graphical User Interface (GUI) that displays schedule activities and
resource utilization profiles. Snapshots of the demonstration GUI screen may be seen in
Figures 6 and 7. The GUI supports selection and execution of an event script which the
script processor translates into API commands that it sends to the scheduler.

Demo Task & Resource
Scheduler

Application Program

Audit

TestScript Processor

GUI

Interface

Event

Scripts

Figure 3. The Prototype System Architecture

A typical script initializes the scheduler by describing the resources available for
scheduling, commands the creation of activities to be scheduled, and simulates execution
events such as completion of execution. The script also notifies the GUI as objects to be
displayed are created.

Graphical presentation of scheduler operation is visually convincing, but it is inconvenient
for testing and benchmarking purposes. Recently, auditing and test functions were added to
facilitate execution and validation of complex event scripts. The test function automates the
execution of scripts and the invocation of the audit function, which checks the schedule for
consistency and correctness.

Architecture of the Scheduler

The internal architecture of the scheduler is depicted in Figure 4. The base layer supplies
basic temporal reasoning capability. This includes objects such as uncertain time-points
and constraints, and functions for updating and querying the temporal knowledge base.

Application Specific (DADS) Program Interface

Constraint Engine & Temporal Knowledge Base (TMM)

Scheduling Core Domain Model

DADS Domain Model Generic Application

Program

Interface

Figure 4. The Architecture of the Scheduler

The Scheduling Core Domain Model supplies the basic objects and functions needed for
scheduling and resource management. Combined with the Generic API, these layers form
a core scheduling capability that can be applied to various scheduling domains. In the
DADS V0 Scheduler implementation, the base domain model was extended through
specialization and extension to provide appropriate domain-specific capabilities, shown in
the figure as the DADS Domain Model and the DADS API.

Domain Model

Key object classes of the scheduling core domain model include resources, requirements,
activities and hierarchical activities. These are shown in Figure 5. along with related
objects classes of the DADS scheduling domain model.

Activity

main-token
requirements

Hierarchical
activity

parent
children

Requirement

attributes
activities

Resource

name
attributes
availabilities

DADS Obj.

client
dads-name

DADS Act.

predecessors
successors

DADS Req.

usage
usage-type

DADS Res.

Figure 5. Key DADS Scheduling Object Classes

An activity represents an action to be scheduled. Each activity has an associated main-
token which defines its end points in time and its possible duration range. An activity may
be linked to multiple resource requirements. These abstractly define attributes that must be
satisfied by the resources allocated to the activity. A subclass of the activity allows
hierarchical activity structures to be defined. These were used in the DADS scheduler to
implement tasks with component subtasks.

As an example, in the DADS application, a data ingestion task will have several subtasks.
The data buffering subtask requires access to the FDDI network and a specific amount of
space on one of the data ingestion magnetic disks. A subsequent archiving subtask
requires access to the data on buffer disk and space on the UNITREE archive magnetic
disk.

The core resource classes allow resources to be conceptually organized into pools using a
hierarchical name structure (which permits wildcards) and using a list of resource
attributes. Each resource has an associated availability that defines the maximum quantity
of that resource and its temporal range.

Specialization of the core object classes extend the hierarchy to include characteristics of the
target domain. In the DADS scheduler these specializations share a common parent class,
the DADS object, which defines attributes every DADS activity, resource requirement, or
resource must have. Only the client and dads-name attributes are shown in the figure.

Application Program Interface (API)

The Application Program Interface was specified formally by documenting data content
(i.e. fields and forms) of the primary information components (i.e. tasks, subtasks,
resources, etc.) exchanged between the scheduler and DADS subsystems. For each
command, the documentation details the participants in the exchange utilizing the
command, the conditions under which the command occurs, the intent (semantics) of the
command, and the scheduler's response to the command under both normal and error
conditions.

The following command categories describe the functions of the scheduler visible via the
API. The categories have been intentionally kept rather abstract and high level here. Not all
command categories have been fully implemented in the prototype scheduler.

Definition/Instantiation - Inform the scheduler of the existence of scheduling entities such
as activities (i.e. tasks and subtasks), resources, and abstract resource utilization
requirements. These commands do not cause scheduling to occur.

Modification - Change the specifics of information known to the scheduler. This category
encompasses only changes to the scheduling problem (e.g. relaxation of a deadline). It
does not include notification of real-world execution events.

Interrogation/Retrieval - Retrieve schedule and resource allocation information from the
scheduler. This information is based on the scheduler's model of the problem space, its
record of past events, and its projection of future events including resource utilization.

Scheduling/Rescheduling - Compute a new schedule with resource allocations. Commands
in this category may be invoked indirectly by commands in the Update/Synchronization

category. Update/Synchronization - Inform the scheduler of the occurrence of real-world
events (e.g. activity execution completion) which may affect the schedule. This category
also includes commands for the transfer of responsibility for an activity from the scheduler
to another subsystem (e.g., an execution monitor or dispatcher).

Notification - Inform another subsystem that a problem (or potential problem) has been
detected by the scheduler.

Communication Handshaking - Provide positive acknowledgment of information transfer.

Fault-Tolerance/Recovery - Support for information backup and recovery from failures.

Scheduling Policy

The operation of the scheduler is controlled by scheduling policies. These are currently
captured in domain-specific, hard-wired algorithms for resource assignment and activity
scheduling.

The baseline resource assignment and scheduling algorithm is:

For each activity to be scheduled:

If the activity has component activities,
Schedule each of its component activities (i.e., apply this algorithm recursively).

If the activity is scheduleable,
For each resource requirement of this activity:

- If a satisfactory resource is available for use without causing it to be
oversubscribed,
assign that resource to meet the requirement.

Availability implies that the resource is part of the resource pool
specified in the resource requirement and has the attributes specified
in the resource requirement.

-If no satisfactory resource is available,
apply the following stratagems in sequential order,

using the possible resources until one of them successfully eliminates
the oversubscription:

* Constrain the order of activities involved in the oversubscription:
Individually before the activity, or
Individually after the activity, or
Collectively before the activity, or
Collectively after the activity.

* Relax the deadline of activities involved in the oversubscription and
constrain the order of activities (as above)

* Constrain the order of parent activities of the activities involved in the
oversubscription (as above)

* Report failure [and Exit]

If the activity is still scheduleable
and all component activities of this activity have been scheduled,

Mark the activity scheduled.

Then update:

The schedule's temporal knowledge base,

The time bounds of all changed resource utilization profiles.

One thing to notice in the algorithm is the emergence of situations to control the scheduling.
For example, take the situation where the scheduler should schedule activities if their
resources won't possibly be oversubscribed. This was a DADS requirement that other
domains need not be constrained to have. But, in its current incarnation, it is hard-wired
into the algorithm. Should this change, then the algorithm must be modified, increasing
scheduler maintenance costs. As new policies are incorporated, these costs will be
untenable. Hence, changing over to other approaches such as rule-bases, will constrain
costs and allow for evolvability.

Scheduling Example

The operation of the prototype scheduler is revealed in Figures 6 and 7. In this simple
example, seven data ingestion tasks have been scheduled. Each task contains four subtasks
(not visible) and is represented in the display as a horizontal timeline. The solid portion of
the timeline indicates the earliest possible execution of the task. The dashed portion of the
timeline indicates scheduling flexibility between earliest execution and the task's completion
deadline.

At the bottom of the display, the resource utilization of a selected resource is shown. The
black profile line indicates expected resource utilization if all tasks execute as early as
possible. The gray profile line indicates possible resource utilization.

Figure 6. Simulation of the Baseline DADS V0 Scheduling Approach (FIFO Queue)

In this figure, the tasks have been configured to simulate the baseline DADS V0 scheduling
approach. In the baseline approach, all resources needed by the component subtasks are
allocated to the task. Then tasks are then scheduled using a First-In First-Out (FIFO)
Queue. Additional constraints were added to enforce this queuing.

Parallel task execution occurs until resource utilization reaches 100%. The subsequent
tasks must wait for ongoing tasks to complete.

The deadlines of tasks 104 through 106 could not be met. These deadlines were removed,
causing the dashed portion of the timeline of these tasks to extend to infinity. Task 106
actually started AFTER it's completion deadline.

The resulting resource utilization is very inefficient. It has large regions of rather low
utilization an is spread over almost five hours.

Figure 7. Shows the same tasks scheduled using the full power of the HTRS scheduler.

Figure 7. Efficient Automated Scheduling and Resource Allocation

Resource requirements were specified with respect to individual subtasks, and FIFO
queuing constraints were not imposed. The resulting schedule is clearly superior.

All tasks were scheduled within their deadlines. The scheduler has optimized resource
utilization (as evidenced by the compact profile). And the entire group of tasks requires
only slightly more than one hour. This leaves time for an opportunistic system to initiate
several tasks such as trend analysis routines, maintenance tasks for adding new system
components, or quicker service. Moreover, using less powerful hardware could lengthen
the overall duration, but still beat the performance of the FIFO approach.

This simple example shows that a constraint-based task and resource schedule can provide
substantial improvements in system performance over simple queuing schemes. What may
not be evident are the benefits it provides through rapid rescheduling in response to
unexpected events (e.g., resource failures), and through the automation of complex
scheduling policies. These performance improvements could translate into cost savings
through the use of less expensive hardware.

Conclusion

The HTRS scheduler prototype has been successfully developed for the GSFC DAAC.
Special attention should be paid in the identification of the scheduler requirements and the
DADS domain model. Even though the prototype is still in its initial phase and it has not
yet been integrated into the DADS, the effort has been very informative. In particular, it
was demonstrated using realistic examples of DADS activities that a FIFO queue algorithm
can be extremely inefficient under certain conditions, and can drastically reduce the overall
performance of the DADS. The scheduler cannot only make better use of limited resources
and prevent a backlog of data, but it can also provide valuable information about resource
bottlenecks and performance characteristics. The next challenge will be to integrate HTRS
in the DADS , monitor its performance, and evaluate its benefits when running in a real
operational system such as the GSFC DAAC.

In the context of mass storage systems, scheduling can help ensure that timely service is
provided to users who expect a lot from these expensive computing facilities. Likewise,
scheduling can be used as a simulation tool to predict the performance from adding
particular hardware. By utilizing the same scheduling environment, these simulations can
be based on real information from the operating environment and can provide quality
information for decision makers. In some cases, decision makers may avoid costly
hardware purchases by tweaking the scheduling policy algorithm. Hence, the scheduling
policy algorithm must be flexible enough to be modified quickly in order to contain
software maintenance costs. Certainly, the use of scheduling will provide better service for
users, faster processing throughput, and cheaper costs.

In fact, many of the scheduling issues presented here have arisen throughout numerous
NASA applications. Over the years, the X-OTP has provided scheduling expertise to
various projects by focusing on rapid prototyping of new technologies for mitigation of
risk, technology transfer through continued software development from prototypes, and
reduction in cost through software reuse of generic tools. By working with Honeywell
Technology Center, X-OTP is further reducing software development costs by providing
difficult requirements to companies, who can then apply developed techniques to other
commercial domains such as aviation communications scheduling. By helping companies
expand into new markets, NASA, without incurring high maintenance costs, increases the
likelihood that dual-use commercial software will survive over the lifetime of lengthy
projects such as EOS.

X-OTP, on the other hand, requires feedback from projects whose requirements push the
state-of-the-art. As intended, the GSFC DAAC, through Hughes-STX, has provided this
feedback before the larger EOSDIS has gone into operational use. The GSFC DAAC,
however, is an operational system that cannot be interrupted with technology that is too
risky. Hence, prototypes such as the IIFS can quickly test very risky technology in an
end-to-end framework without adversely affecting operations. For one thing, the IIFS
was the first system at GSFC to suggest the use of object-oriented databases for the EOS
domain. Likewise, the IIFS was the first system to suggest the use of neural networks for
classifying remote sensing data -- a technique that is now widely accepted in remote
sensing circles. And, finally, the use of this particular scheduling software was based
upon a NASA internal R&D project (i.e., Directors Discretionary Fund) entitled "Near real-
time generation of Browse Products" and incorporated into the IIFS. Because of the
development of the IIFS and the close proximity to NASA projects, the Information
Science and Technology Branch has provided in-house expertise regarding emerging
technologies such as these. Moreover, in addition to applied research, the branch has
developed one of the DAACs operational quality assurance routines for the TOVS

pathfinder data sets. Likewise, the Space Data and Computing Division, for which the
Information Science and Technology Branch is a part of, is currently GSFC's only
supercomputing facility with an extremely large mass storage system (over 20 Terabytes);
this enables feedback regarding technology integration of large, expensive systems. All in
all, elaborate collaborations such as these will obviously be required to evolve one of the
most ambitious engineering and information system projects, or namely, the Earth
Observing System.

Acknowledgments

Primary funding for this scheduling project has been provided by the Code X - Operations
Technology Program under Dr. Mel Montemerlo, NASA-HDQ. Funding has also been
provided by the GSFC DAAC as well as Honeywell Technology Center. Special thanks
are extended to members of the Information Science and Technology Branch, who have
provided invaluable feedback through the use of the Intelligent Information Fusion System.

1 . L. Bodden, P. Pease, JJ. Bedet, W. Rosen: Goddard Space Flight Center Version 0 Distributed Active
Archive Center. In Third Conference on Mass Storage Systems and Technologies. NASA CP-3262, 1993,
pp. 447-453.

2 . H. El-Rewini, T. Lewis, H. Ali, Task Scheduling in Parallel and Distributed Systems. PTR Prentice
Hall, Englewood Cliffs, New Jersey, co. 1994

